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Pectin methylesterase (PME) catalyzes the de-methylesterification of pectin in plant cell walls during cell elongation.1

Pectins are mainly composed of a(1, 4)-D-galacturonosyl acid units that are synthesized in a methylesterified form in the
Golgi apparatus to prevent any interaction with Ca2+ ions during their intracellular transport.2 The highly methylesterified
pectins are then secreted into the apoplasm3 and subsequently de-methylesterified inmuro by PMEs. This can either
induce the formation of pectin gels through the Ca2+ crosslinking of neighboring non-methylesterified chains or create
substrates for pectin-degrading enzymes such as polygalacturonases and pectate lyases for the initiation of cell wall
loosening.4 PMEs belong to a large multigene family. Sixt-six PME-related genes are predicted in the Arabidopsis
genome.1 Among them, we have recently shown that AtPME3 (At3g14310), a major basic PME isoform in A. thaliana, is
ubiquitously expressed in vascular tissues and play a role in adventitious rooting.5 In flax (Linum usitatissimum), three
genes encoding PMEs have been sequenced so far, including LuPME3, the ortholog of AtPME3. Analysis of the LuPME3
isoform brings new insights into the processing of these proteins.

LuPME3 is Expressed in Root Flax

In flax (Linum usitatissimum), three genes encoding PMEs
have been sequenced so far: LuPME1 (AF355056), LuPME3
(AF188895) and LuPME5 (AF355057).6 The effects of the
expression of the LuPME3 gene, the ortholog of AtPME3, have
been previously investigated in transformed flax cell lines (calli)
and transformed tobacco. Both the methylesterification of pectins
and the cellular cohesion were demonstrated to be affected in
flax calli underexpressing LuPME3.7 In transformed tobacco,
LuPME3 promoter was active mainly in immature leaves, roots
and during pollen germination and pollen tube growth.8 To
investigate the expression pattern of LuPME3 during the flax
development, specific antibodies have been generated. In flax calli,
as illustrated in Figure 1A, the antibodies recognized a single band.
To confirm the specificity of the antibodies, an immunoblotting
experiment was performed on cell wall-enriched protein extracts
from flax calli transformed with a partial LuPME3 sequence in an
antisense orientation. The transformed calli showed very low level of
expression of the corresponding transcripts.7 At the protein level,
as shown in Figure 1A, the immunoreactive band was no longer
detected in the transformed calli, thus confirming that the
antibodies specifically recognized LuPME3 in flax cell wall protein

extracts. In addition, proteomic analysis of the immunodetected
band, confirmed that the protein corresponded to LuPME3 (not
shown). These antibodies were also shown to specifically recognize
the Arabidopsis AtPME3 ortholog.5

To gain insights into the role of LuPME3 in flax, cell wall-
enriched protein extracts from plantlets were separated by isolectric
focusing (IEF) and then submitted to a PME activity assay on gel
(zymogram) or to protein gel blot analysis. Flax seedlings were
grown at 25°C for 3 d in the dark, then under light for 1, 7 and
13 d. Epicotyls (7 and 13 d only), cotyledons, hypocotyls and roots
were collected and their cell wall proteins extracted. PME activity
was detected on gel by the previously reported agar-pectin
sandwich method.9 As previously described,10,11 flax seedlings
expressed 2 neutral (N1 and N2), 4 basic (B1a, B1b, B3a and B3b)
and 1 strongly basic PME forms (B2) (Fig. 1B). Protein Western
analysis using anti-LuPME3 antibodies allowed the immuno-
detection of the B3a isoenzyme as the LuPME3 protein (not
shown) among the various active PME spots. LuPME3 isozyme
was found to be mainly active in roots, appearing progressively
from 1 to 13 d (Fig. 1B). For confirmation, cell wall-enriched
protein extracts from flax tissues were resolved on SDS-PAGE and
immunodetected with the specific anti-LuPME3 serum after
blotting (Fig. 2C). This corroborated the strong expression of the
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LuPME3 protein in roots, as previously suspected from the
analysis of the promoter activity observed in root vascular tissues
and in root meristem of transgenic tobacco.8 In conclusion,
LuPME3 encodes for an active basic PME, previously referred to
B3a isoform, and is likely to play a major role in the flax root
development. In that respect, LuPME3 and AtPME3 show strong
similarities at the level of the protein sequence, the site of
expression and physiological relevance.

LuPME3 Accumulates in Flax
Roots as a Non Processed Protein

AtPME3 belongs to group 2 PMEs that
are composed of an active domain and a
N-terminal PRO domain separated by a
proteolytic cleavage site.1,12 This PRO
region exhibits similarity with PME
inhibitors and was proposed to prevent
group 2 PMEs activity during their
transport through the secretory path-
way.13 It has been speculated that the
PRO region is cleaved from the PME
domain during secretion as only proteins
lacking this domain have been identi-
fied in plant cell walls.14,15 This was
recently confirmed by Wolf and colla-
borators12 through the demonstration
that the PRO region mediates the reten-
tion of unprocessed group 2 PMEs in
the Golgi apparatus and that its cleavage
is a prerequisite for secretion.

As its Arabidopsis ortholog, LuPME3
is synthesized as a group 2 pre pro-
protein exhibiting the conserved RRLL
motif required for its proteolytic proces-
sing.6 From the prediction of the PRO
domain and the cleavage site, LuPME3

pro-protein and mature protein are expected to exhibit MW of
54 kDa and 34 kDa and pI of 9.18 and 9.8, respectively. As
illustrated in Figure 1A and C, anti-LuPME3 antibodies
recognized a single polypeptide band exhibiting a MW of 50–
54 kDa and a pI 9.2 in flax seedlings and callus which is
compatible with the accumulation of a non-processed pro-protein
in flax tissues. In contrast, AtPME3 accumulates in plant
tissues as a mature PME (Fig. 1A), which was confirmed by

Figure 1. (A) SDS-PAGE and protein gel blot
analysis using anti-LuPME3 antibodies of
proteins extracted from the cell walls of flax
calli and Arabidopsis plants. NT: Non
transformed flax calli and T: Transformed
flax calli underexpressing LuPME3. WT: wild-
type Arabidopsis plants. pme3–1:
Arabidopsis null mutant. Left panels:
Coomassie staining. Right panels: protein
gel blot. (B) Detection of PME activities
(zymogram) of proteins isolated from cell
walls of flax plant organs collected at
various developmental stages and sepa-
rated by IEF. (C) Silver staining (left panel)
and protein gel blot (right panel) per-
formed on flax cell wall enriched proteins
separated by SDS-PAGE. C1, C7, C13: 1-,
7- and 13-d-old cotyledons. E7, E13: 7- and
13-d-old epicotyls. H1, H7, H13: 1-, 7- and
13-d-old hypocotyls and R1, R7, R13: 1-,
7- and 13-d-old roots.
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the identification of peptides mapping the PME3 domain in
Arabidopsis cell wall-enriched fractions.5 Absence of PME
maturation is not a general feature in flax as LuPME5, another
group 2 flax PME, was demonstrated to be fully processed in
flax cells.6 Such a difference in group 2 PME maturation is
questionable. High molecular weight PMEs have also been
purified from other plants although, in absence of sequence
information about these esterases, it is highly speculative to
conclude that the accumulation in tissues of such large PMEs

also resulted from the deficiency in protein maturation.16,17

In conclusion, the data presented in this addendum suggest
that the maturation of group 2 PMEs by cleavage of its inhibit-
ing PRO region is not a strict prerequisite for secretion and
may differ depending on plant tissues and/or physiological
conditions.
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